09/23/2016 Limits and Continuity

- Open sets, closed sets, etc...

We start with

define open ball $B_{e}(x) = \{ y \in \mathbb{R}^n \mid \| y - x \| < e \}$

defn: A set $U \subseteq \mathbb{R}^n$ is called open if $\forall x \in U,$

\[\exists \, \varepsilon > 0 \text{ s.t. } B_{e}(x) \subseteq U \]

"for every pt in U, there is an open ball in U centered at that pt."

Examples:

1) $(a, b) \subseteq \mathbb{R}$:

$$ \left(\frac{e}{2}, \frac{e}{2} \right) $$

i.e. $e = \min \left\{ \frac{b-a}{2}, \frac{b-x}{2} \right\}$

2) generic:

"boundary pt not in U"

3) non-example $(a, b) \subseteq \mathbb{R}^2$:

$$ a \ x \ b $$

$$ e $$
Define: Closed sets: A set \(C \subseteq \mathbb{R}^n \) is closed if its complement \(\mathbb{R}^n - C \) is open.

Examples:

1. Square with inner part:
 - Indeed, complement is open.
 - Each pt \(x \) has minimum distance from square.

2. Empty square.
 - Claimed.

iii) Non-example:

\[A = \{ 0, \frac{1}{n}, \ldots \} \]

Here \(0 \in A^c \), but for any \(\varepsilon > 0 \), \(B(0, \varepsilon) \cap A = \emptyset \) i.e. \(B(0, \varepsilon) \not\subseteq A^c \) so \(A^c \) is not open, so \(A \) is not closed.

- Enough to show that if \(\varepsilon > 0 \), \(\exists n \in \mathbb{N} \) numbers e. t. h., \(\frac{1}{n} < \varepsilon \). Picking \(n > \frac{1}{\varepsilon} \) (Archimedean property)
Naturally appearing set:
\[y > 0 \Rightarrow \frac{x}{y} > 0 \Rightarrow \text{not in domain} \]

Example 1.5.5: \(f(x,y) = \sqrt{\frac{x}{y}} \)

We need \(y \neq 0, \frac{x}{y} > 0 \Rightarrow \)

\(x = \text{axis}\) is not in domain.

A naturally occurring set
is neither open nor closed.
Look at two axes. \(\Rightarrow \)

\(\Rightarrow \) "Sets are not closed."\(\Rightarrow \)

\(\emptyset \subset \mathbb{Q} \): Example of a set that is
both open and closed? \(\Rightarrow \mathbb{R} \)

Why is \(\emptyset \) open? \(\Rightarrow \) "vacuous truth"

Rational numbers: \(\mathbb{Q} \subset \mathbb{C} \Rightarrow \mathbb{R} \)

Is \(\emptyset \) open? No; any \((a,b)\) contains irrationals.

Is \(\emptyset \) closed? No; any \((a,b)\) contains irrationals.

However \(\mathbb{Z} \subset \mathbb{R} \Rightarrow \text{closed} \).

Intuitive sets of points

\[-2 -1 0 \quad \mathbb{Q} \quad 1 \quad 2 \]

\(\text{can be closed.} \)
Q: An open set \(U \subset \mathbb{R} \) s.t. \(Q \subset U \) and \(U \neq \mathbb{R} \)

A: \(\mathbb{R} \times \{ n \pi \} \) any irrational

Q: An open set \(U \subset \mathbb{R} \) s.t. \(Q \subset U \) and \(U \) has "finite length"?

A: use balls with radius \(\frac{1}{2^n} \) (where \(\sum \frac{1}{2^n} = 2 \))

Need: Rational numbers are countable...

Three more concepts:

<table>
<thead>
<tr>
<th>Term</th>
<th>Idea</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>closure:</td>
<td>The smallest (\overline{U} = { x \in \mathbb{R}^n \mid B_r(x) \subset U \neq \emptyset }) if (r > 0)</td>
<td>(\square \rightarrow \square)</td>
<td></td>
</tr>
<tr>
<td>interior:</td>
<td>The largest (U^o = { x \in \mathbb{R}^n \mid \forall r > 0 \text{ with } B_r(x) \subset U })</td>
<td>(\square \rightarrow \square)</td>
<td></td>
</tr>
<tr>
<td>boundary:</td>
<td>Those pts that might be added/removed when taking closure/interior for all (r > 0)</td>
<td>(\emptyset) inside (\square)</td>
<td></td>
</tr>
</tbody>
</table>

"Complement"
Limits of sequences:

Defn: A sequence \(\{a_n\}_{n=1}^{\infty} \) converges to a point \(\alpha \in \mathbb{R}^k \) if for every \(\varepsilon > 0 \) there is some \(M \) s.t. \(n > M \) \(|a_n - \alpha| < \varepsilon \).

(For a challenge \(\varepsilon \), I have to provide an answer \(M \)).

Examples: 1) \(a_n = \frac{1}{n} \in \mathbb{R}^1 \): \(a_n \to 0 \).

I need to show that for all \(\varepsilon > 0 \), \(\exists M \) s.t. for all \(n > M \) I have \(|\frac{1}{n} - 0| < \varepsilon \). Pick any \(M > \frac{1}{\varepsilon} \).

=> Rethink our example: \(\{\frac{1}{n}\} \) was not a closed set because it did not contain all of its limit points.

2) \(a_n = \left(\frac{1}{n^2} \right) \in \mathbb{R}^2 \). \(a_n \to (0) \) clearly. But how to prove?

\[|a_n - (0)| < \varepsilon \iff \sqrt{\frac{1}{n^2} + \frac{1}{(n+1)^2}} < \varepsilon \]

Some not so difficult algebra should work:

\[\sqrt{\frac{1}{n^2} + \frac{1}{(n+1)^2}} < \sqrt{\frac{2}{n^2}} = \frac{\sqrt{2}}{n} \to \text{to be } < \varepsilon. \]
Better way: I would like theorem to say:
\[\frac{1}{n} \to 0 \Rightarrow \frac{n}{n+1} \to 1 \Rightarrow \left(\frac{n}{n+1} \right) \to 1 \]

This is true indeed:

If \(\{a^n\} \subseteq \mathbb{R}^k \) and \(a_n = (a_{n1}, \ldots, a_{nk}) \) and \(a = (a_1, \ldots, a_k) \), I am given that \((a_{n1}) \to a_1 \) and I want to show that \((a_{nk}) \to a_k \).

The assumption means that for any given \(\varepsilon_1, \ldots, \varepsilon_k \), I can find \(M_1, \ldots, M_k \) so that

\[|(a_{n1}) - a_1| < \varepsilon_1 \quad \forall n > M_1 \]
\[|(a_{n2}) - a_2| < \varepsilon_2 \quad \forall n > M_2 \]
\[\cdots \]
\[|(a_{nk}) - a_k| < \varepsilon_k \quad \forall n > M_k. \]

To show that \((\mathbf{a}_n) \to \mathbf{a} \), I want for any \(\varepsilon > 0 \) an \(M \) s.t. \(n > M \)

\[|\mathbf{a}_n - \mathbf{a}| < \varepsilon \quad \Rightarrow \sqrt{[a_{n1} - a_1]^2 + \cdots + [a_{nk} - a_k]^2} < \varepsilon \]

Choose \(M > \max \{M_1, \ldots, M_k\} \) and you have

\[\sqrt{\varepsilon_1^2 + \cdots + \varepsilon_k^2} < \varepsilon. \]
That is, for a given $\epsilon > 0$, I have to find\ indica small positive ϵ_i's such that
\[
\sqrt{\epsilon_1^2 + \ldots + \epsilon_k^2} < \epsilon
\]
This is definitely doable, so pick $\epsilon_i < \frac{\epsilon}{\sqrt{k}}$ for example.