Proof (roughly D’Alembert’s)

1746 proof

We’d like to say: the root \(z_0 \) is the \(z_0 \in \mathbb{C} \) achieving the minimum value \(f(z_0) = 0 \) where \(f(z) = |p(z)| \) i.e.: \(\mathbb{C} \xrightarrow{p} \mathbb{C} \xrightarrow{z \mapsto p(z)} \mathbb{R} \)

Does \(f: \mathbb{C} \rightarrow \mathbb{R} \) achieve a minimum?

Certainly, \(f \) is continuous (Why?)

But \(\mathbb{C} \) is not compact (This is a problem for \(\frac{1}{1+z^2} \) and for \(e^z \))

We claim that \(f(z) = |p(z)| \) should achieve a minimum for some choice of \(R \), which is compact (by Extreme Value Theorem)

and this should be its global minimum \(f(z_0) \)

because \(f(z) = |p(z)| = |z^k + a_{k-1}z^{k-1} + \ldots + a_1z + a_0| \geq |a_0| \)

\(f(c_0) \)

for \(R \) sufficiently large. How large?

triangle inequality

If \(|z| > R \) then \(f(z) = |p(z)| \geq |z^k| - |a_{k-1}z^{k-1} + \ldots + a_1z + a_0| \)

\(\geq R^k \)

(should dominate for \(R \) large)

\(\leq |a_{k-1}| |z^{k-1}| + \ldots + |a_1||z| + |a_0| \)

\(\leq k \cdot \max\{|a_{k-1}|, \ldots, |a_0|\} \cdot |z|^{k-1} \)

\(A = \)

\[f(z) \geq R^k - kAR^{k-1} \]

\[= R^{k-1}(R - kA) \]

\(\geq R^{k-1}A \) if \(R \geq (k+1)A \)

\(\geq A \) if \(R \geq 1 \)

\(\geq |a_0| \) if we choose \(R = \max\{|a_{k-1}|, \ldots, |a_0|\} \)

Now since \(z_0 \) achieves minimum of \(|p(z)| \), we want to show \(|p(z_0)| = 0 \) i.e. \(p(z_0) = 0 \). If not, so \(|p(z_0)| > 0 \), we'll show \(f \) some \(z_1 \) in a small circle around \(z_0 \) with \(|p(z_1)| < |p(z_0)| \).
The algebra is easier if we replace \(p(z) \) by \(q(z) = p(z + z_0) \)
(i.e. \(p(z) = q(z - z_0) \))
which has same values for \(|q(z)| \), so still has minimum value \(|q(z_0)| = |p(z_0)| \), and \(q(z) \) is still a degree-k polynomial
since \(q(z) = p(z + z_0) = (z + z_0)^k + q_{k-1}(z + z_0)^{k-1} + \ldots + q_1(z + z_0) + q_0 \)
\[= z^k + b_{k-1}z^{k-1} + \ldots + b_1 z + b_0 \]
\[b_0 = q(z_0) = p(z_0) \neq 0 \text{ by assumption} \]

Now write \(q(z) = b_0 + b_1 z + \ldots + b_k z^k \)

A key point (again see footnote):

- \(\theta = x + iy \) has \(z = e^{i\theta} \)
- so as \(\theta \) goes from \(0 \) to \(2\pi \)
 - \(z \) travels once around,
 - \(\arg z \) orbits once around

When \(|z| = \rho \) is small,
\[b_0 + b_j z^j \] travels in a small circle around \(b_j \) times.

We'll try to find \(z_1 \) on this circle making \(|q(z_1)| < |q(z_0)| \)
with \(|z_1| = \rho \)

Pick \(\epsilon \) very small, and pick \(z_1 \) as in this picture:

Then we'll have \(|q(z_1)| < |b_0| = |q(z_0)| \)
as long as \(|b_{j+1} z^{j+1} + \ldots + b_{k-1} z^{k-1} + z^k| < |b_j| \rho^j \)
\[\leq |b_{j+1}| \rho^{j+1} + \ldots + |b_{k-1}| \rho^{k-1} + \rho^k \]
\[\leq \max \{ |b_{j+1}|, \ldots, |b_{k-1}|, 1 \} \cdot (k-j) \rho^{j+1} \]
So we need \(B(k-j) \rho^{j+1} < |b_j| \rho^j \), i.e. \(B(k-j) \rho < |b_j| \) or \(\rho < \frac{|b_j|}{B(k-j)} \)
(46)

Q: Where did this proof fail for \(f(x) = x^2 + 1 \) having no roots \(x \in \mathbb{R} \)?

It does achieve a minimum value \(f(0) = 1 \) at \(x = 0 \).
But the "man" can't walk around the "flagpole" in a full circle, only at 2 points.

Cor 1.6.14: A polynomial \(z^k + a_k z^{k-1} + \ldots + a_1 z + a_0 \) with \(a_i \in \mathbb{C} \) and \(k \geq 1 \)
has exactly \(k \) roots \(r_1, \ldots, r_k \) in \(\mathbb{C} \) (if you count with multiplicity),
and factors as \(p(z) = (z-r_1)(z-r_2) \cdots (z-r_k) \).

Proof: Induct on \(k \). The base case \(k = 1 \) has \(p(z) = z^1 + a_0 = z - r_1 \) with \(r_1 = a_0 \).

In the inductive step, assume it for \(k-1 \), and
given \(p(z) \) of degree \(k \), find some root \(r_k \) using FundThmAlg.

Use long division algorithm to write

\[
\begin{align*}
\overline{z - r_k} & \quad z^k + a_k z^{k-1} + \ldots + a_1 z + a_0 = p(z) \\
\vdots & \\
\vdots & \\
b & \text{remainder}
\end{align*}
\]

However \(r_k \) a root of \(p(z) \) forces

\[
0 = p(r_k) = g(r_k) (r_k - r_1) + b = b, \quad \text{i.e. } p(z) = g(z) (z - r_1)
\]

Now apply induction to \(g(z) \)

What about irreducible factors of \(p(x) = x^k + a_k x^{k-1} + \ldots + a_0 \) with \(a_i \in \mathbb{R} \)
if we only allow real coefficients in the factors?

E.g. \(x^4 - 1 = (x^2 - 1)(x^2 + 1) \)

\[
\begin{align*}
\overline{(x - 1)} & \quad (x - 1)(x + 1)(x^2 + 1) \quad \text{irreducible over } \mathbb{R} \\
\overline{(x + 1)} & \quad (x - 1)(x + 1)(x - i)(x + i) \quad \text{over } \mathbb{C}
\end{align*}
\]