Q: Where did the proof fail for \(f(x) = x^2 + 1 \) having no roots \(x \in \mathbb{R} \)?

\[y = x^2 + 1 \]

It does achieve a minimum value \(f(x) = 1 \) at \(x = 0 \).
But the "man" cannot walk around the "flagpole" in a full circle, only at 2 points.

COR 1.6.14: A polynomial \(P(x) = a_k x^k + \cdots + a_1 x + a_0 \) with \(a_i \in \mathbb{C} \) and \(k \geq 1 \)
has exactly \(k \) roots \(r_1, \ldots, r_k \) in \(\mathbb{C} \) (if you count with multiplicity),
and factors as \(P(x) = (x - r_1)(x - r_2) \cdots (x - r_k) \).

Proof: Induct on \(k \). The base case \(k = 1 \) has \(P(x) = x^1 + a_0 = x - r_1 \) with \(r_1 = a_0 \).

In the inductive step, assume it for \(k - 1 \), and given \(P(x) \) of degree \(k \), find some root \(r_1 \) using Fundamental Thm Alg.

Use long division algorithm to write

\[
\begin{align*}
\frac{P(x)}{x - r_1} &= \frac{a_k x^k + \cdots + a_1 x + a_0}{x - r_1} \\
&= q(x)(x - r_1) + b \quad \text{for some } b \in \mathbb{C} \\
&\quad \text{and polynomial } q(x) \text{ of degree } k - 1, \\
&\quad \text{monic, i.e.} \\
&\quad q(x) = x^{k-1} + b_{k-2} x^{k-2} + \cdots \\
&\quad \text{remainder } b \text{ is of degree } 0, \\
&\quad \text{i.e. } b \in \mathbb{C}.
\end{align*}
\]

However \(r_1 \) a root of \(P(x) \) forces

\[0 = P(r_1) = q(r_1)(r_1 - r_1) + b = b \quad \text{i.e. } P(x) = q(x)(x - r_1) \]

Now apply induction to \(q(x) \)

What about irreducible factors of \(p(x) = x^4 + a_k x^4 + \cdots + a_0 \) with \(a_i \in \mathbb{R} \)
if we only allow real coefficients in the factors?

\[x^4 - 1 = (x^2 - 1)(x^2 + 1) \]

\[\uparrow \quad \text{or} \quad \downarrow \]

\[\begin{array}{c}
\psi + i \\
\rightarrow \mathbb{C}
\end{array} \]

\[\begin{array}{c}
\psi - i \\
\rightarrow \mathbb{R}
\end{array} \]

\[(x - 1)(x + 1)(x - i)(x + i) \text{ over } \mathbb{C} \]
Cor 1.6.15: If \(p(x) = x^k + a_1 x^{k-1} + \ldots + a_k x + a_0 \) with \(a_i \in \mathbb{R} \), \(k \geq 1 \)

then it can be factored \(p(x) = (x-r_1) \ldots (x-r_k)(x^2 + q_1 x + d_1) \ldots (x^2 + q_m x + d_m) \)

for some \(r_1, \ldots, r_k \in \mathbb{R} \)

with \(c_1, \ldots, c_m \)

\(d_1, \ldots, d_m \)

having \(2m + k = k \) and each quadratic \(x^2 + q_i x + d_i \) irreducible over \(\mathbb{R} \).

Proof: Factor \(p(z) = (z - r_1) \ldots (z - r_k)(z - i \lambda_1) \ldots (z - i \lambda_m) \) with \(\lambda_i \in \mathbb{C} \)

\(\lambda_1, \ldots, \lambda_m \) real \(\in \mathbb{R} \)

\(\lambda_{m+1}, \ldots, \lambda_k \in \mathbb{C} \setminus \mathbb{R} \)

Note that any root \(r = a + ib \in \mathbb{C} \) of \(p(z) \)

has conjugate \(\overline{r} = a - ib \in \mathbb{C} \) another root of \(p(z) \)

since \(0 = p(\overline{r}) = \overline{r}^k + \sum_{j=0}^{k-1} a_j \overline{r}^j \)

\(0 = \overline{0} = p(r) = r^k + \sum_{j=0}^{k-1} a_j r^j = \overline{r}^k + \sum_{j=0}^{k-1} a_j \overline{r}^j \)

Thus the roots \(r_1, \ldots, r_k \in \mathbb{C} \setminus \mathbb{R} \) must come in conjugate pairs \(a + ib, a - ib \) with \(b \neq 0 \)

and \((z - (a + ib))(z - (a - ib)) \)

\(= z^2 - ((a + ib) + (a - ib))z + (a + ib)(a - ib) \)

\(= z^2 - 2az + (a^2 + b^2) \)

irreducible over \(\mathbb{R} \) when \(b \neq 0 \)

since \(\Delta = (2a)^2 - 4(a^2 + b^2) = -4b^2 < 0 \)
§ 1.7 Multivariate derivatives

- answering the question: given \(f: \mathbb{R}^n \to \mathbb{R}^m \), is there a linear function \(\mathbb{R}^n \to \mathbb{R}^m \) that best approximates \(f \) near some point \(\mathbf{x} = \mathbf{a} \in \mathbb{R}^n \), and how to compute it?

We have a good idea already for \(n = m = 1 \), i.e. \(f: \mathbb{R}^1 \to \mathbb{R}^1 \)

Example: \(f(x) = x^3 \) near \(x = 2 \)

\[
\begin{align*}
&f(x) = x^3 \quad \text{near } x = 2 \\
&f(x) = 3x^2 \\
&f'(x) = 3x^2 \text{ exists for all } x \in \mathbb{R}^1 \\
&f(2) = f'(2) = 3 \cdot 2^2 = 12 \\
&g(x) = f(x) - f(a) \\
&\frac{g(x) - g(a)}{x - a} = 3x^2 \\
&\lim_{h \to 0} \frac{g(x) - g(2)}{x - 2} = 12 \\
&g(x) = 12x - 16 \\
&\text{not linear } \mathbb{R}^1 \to \mathbb{R}^1 \quad \text{(affine-linear)}
\end{align*}
\]

- slope \(m = f'(2) = 12 \)

But we could have considered just as well \(f(x) = f(x + a) - f(a) \)

\[
\begin{align*}
&f(x) = (x + 2)^3 - 8 \\
&g(x) = mx = 12x \\
&\text{Linear} \\
&\text{slope } m = f'(a) = 12 \\
&y = f(x) \\
&y = g(x)
\end{align*}
\]

Non-examples:

- \(f(x) = |x| \) near \(x = 0 \)

\[
y = |x|
\]

- \(f(x) = x^3 \) near \(x = 0 \)

\[
\text{but we'll deal with it as an implicit function } x^3 = y \text{ later in Chap 2.}
\]

In fact, here's another equivalent definition of differentiability at \(a \) for \(f: \mathbb{R}^n \to \mathbb{R}^m \), that generalizes better to \(\mathbb{R}^n \to \mathbb{R}^m \):

Definition: For \(U \) open in \(\mathbb{R}^n \) and \(f: U \to \mathbb{R}^m \), \(f \) is differentiable at some \(\mathbf{a} \in U \), with \(f'(a) = m \), if

\[
\lim_{h \to 0} \frac{f(a + mh) - f(a) - mh}{h} = 0
\]

(a linear function \(\mathbb{R}^1 \to \mathbb{R}^m \) as \(h \to 0 \)).
Why equivalent to the usual?

\[\lim_{h \to 0} \frac{f(a+h) - f(a) - mh}{h} = 0 \quad (\text{and exists, in particular}) \]

\[\uparrow \quad \text{since} \quad \lim_{h \to 0} \frac{1}{h}(mh) = m \quad \text{exists, can add it to both sides} \]

\[\lim_{h \to 0} \frac{1}{h}(f(a+h) - f(a) - mh) + \lim_{h \to 0} \frac{1}{h}(mh) = m \]

\[\uparrow \quad \text{limit laws} \]

\[\lim_{h \to 0} \frac{1}{h}(f(a+h) - f(a)) = m \quad \text{usual definition} \]

Rather than doing something naïve (and wrong) for \(\overline{f} : \mathbb{R}^n \to \mathbb{R}^m \), like defining \(f(x) = \lim_{h \to 0} \frac{\overline{f}(x+h) - \overline{f}(x)}{|h|} \) (wrong even for \(n = m = 1 \) since \(|h| \) is always positive)

we ask for a linear function \(L : \mathbb{R}^n \to \mathbb{R}^m \) that plays the above role of \(mh \)...

Definition (7.10, essentially) For \(\overline{f} : \mathbb{R}^n \to \mathbb{R}^m \) open and \(a \in U \),

\(\mathbb{R}^n \cap \mathbb{R}^m \)

say that \(\overline{f} \) is differentiable at \(a \) with derivative \(L \) if some linear transformation \(L : \mathbb{R}^n \to \mathbb{R}^m \)

\[\times \ x \mapsto L(x) \]

with

\[\lim_{h \to 0} \frac{1}{|h|}(f(a+h) - f(a)) - L(h) = 0. \]

In this case we write \(D\overline{f}(a) = L \)

(and we'll see shortly how to compute the matrix \([D\overline{f}(a)] = [L] \)

that represents \(L : \mathbb{R}^n \to \mathbb{R}^m \), via partial derivatives & Jacobian matrix.)