Implicit Function Thm

Suppose we are looking at a solution set in \mathbb{R}^{n+m} of n equations in the $n+m$ unknowns.

e.g. in \mathbb{R}^{2}, $F(x) = 0$

express x in terms of y here?

We might expect at most points on the solution set, we can pick a neighborhood and m ("nonpivotal") variables y_1, \ldots, y_m locally that let us express the n ("pivotal") variables left x_1, \ldots, x_n as $x = g(y)$.

Parameterize

e.g. in \mathbb{R}^2, on solution set $F(y) = x^2 + y^2 - 4$

near $\bar{c} = (a, b)$

one can either express $x = +\sqrt{4-y^2}$

or $-\sqrt{4-y^2}$

and also $y = +\sqrt{4-x^2}$

or $-\sqrt{4-x^2}$

But at $x = (\pm 2, 0)$, one can only express $x = -\sqrt{4-y^2}$ in a neighborhood around it:

(Can't decide $y = +\sqrt{4-x^2}$ or $-\sqrt{4-x^2}$ in any neighborhood around it.)
THM (Implicit Function Thm) Given $U \subseteq \mathbb{R}^n$ open in $C'(U)$

and a point $\bar{c} \in U$ where $DF(\bar{c}): \mathbb{R}^{n+m} \to \mathbb{R}^m$ is onto (= Full-rank, = surjective)

if one relabels the variables in \mathbb{R}^{n+m} as $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ so that

$DF(\bar{c}): \begin{bmatrix} \bar{x}' \\ \bar{y}' \end{bmatrix}$ has \bar{x}', \bar{x} as pivot columns, then write $\bar{c} = \begin{pmatrix} a \\ b \end{pmatrix}$

with $\bar{a} \in \mathbb{R}^n$, $\bar{b} \in \mathbb{R}^m$, there are neighborhoods $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^m$ with $\bar{a} \in A$, $\bar{b} \in B$ such that $f(\bar{g}(\bar{y})) = \bar{c}$ and $\bar{g}(\bar{y}) = \bar{a}$ open neighborhoods of \bar{a} in \mathbb{R}^n and \bar{b} in \mathbb{R}^m thereby making \bar{g} differentiable such that $F(\bar{g}(\bar{y})) = \bar{c} \quad \forall \bar{y} \in B$.

\[i.e. \quad \bar{x} = \bar{g}(\bar{y}) \text{ expresses } \bar{x} \text{ in terms of } \bar{y} \text{ around } \bar{c} = \begin{pmatrix} a \\ b \end{pmatrix} \text{ on } F(\bar{g}) = \bar{c}. \]

(proof in a while...)

EXAMPLES:

1. $\mathbb{R}^2 \rightarrow \mathbb{R}^n$ has $JF(\bar{y}) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$

$F(\bar{y}) = x^2+y-1$

so $JF(\bar{b}) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$ has either x or y as pivot variables

but at $\begin{pmatrix} \bar{g} \\ \bar{b} \end{pmatrix} = \begin{pmatrix} \pm 2 \\ 0 \end{pmatrix}$, $JF(\bar{g}) = \begin{bmatrix} \pm 4 \\ 0 \end{bmatrix}$

only can have x as a pivot variable,

so one can only deduce from Imp Fn Thm

that F取得極值 \begin{pmatrix} \pm 2 \\ 0 \end{pmatrix} where $x(\pm \sqrt{4-1})$

only exists.

2. Worse things can happen, e.g.

$\mathbb{R}^2 \rightarrow \mathbb{R}^1$

$F(\bar{x}) = y^3 - x^2(x+1)$ defines a nodal cubic curve via $F(\bar{x}) = 0$.

\[y^3 - x^2(x+1) = 0 \]

\begin{tikzpicture}
 \draw [->] (-3,0) -- (3,0) node [right] {x};
 \draw [->] (0,-3) -- (0,3) node [above] {y};
 \draw [domain=-2:2, samples=100] plot (\x, {\x^3 - \x^2*(\x+1)});
 \filldraw (-1,0) circle (2pt);
 \filldraw (0,-1) circle (2pt);
\end{tikzpicture}
Examining \(JF(x, y) = \left[\begin{array}{c} \frac{\alpha}{-3x^2 + 2x} \\ \frac{\beta y}{-3x^2 + 2x} \end{array} \right] \), one sees that for most (b) on the curve, both variables \(x, y \) are pivotal with \(a \neq 0 \) and one can write \(x = g(y) \) or \(y = g(x) \).

However, when \(x = -\frac{2}{3} \), \(JF(x) = \left[\begin{array}{c} \frac{\alpha}{3} \\ \frac{\beta}{3} \end{array} \right] \) and one can only write \(y = g(x) \).

When \(y = 0 \), \(x = -1 \), \(JF(-1) = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \), and one can only write \(x = g(y) \).

When \(x = 0 \), \(y = 0 \), \(JF(0) = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \), so we don't get anything from Imp. Fn. Thm.

Example 2.10.6

The 5-variable system \[
\begin{cases}
x^2 - y = a \\
y^2 - z = b \\
z^2 - x = c
\end{cases}
\]
has \(\tilde{c} = \left(\begin{array}{c} b \\ x \\ y \\ z \\ 0 \end{array} \right) \) as a solution. Near \(\tilde{c} \), can we express \(\left(\begin{array}{c} z \\ y \\ x \end{array} \right) \) in terms of \(\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) \) on this solution?

Here \(F: \mathbb{R}^5 \rightarrow \mathbb{R}^3 \)

\(F(x, z, y, a, b) = \left(\begin{array}{c} x^2 - y - a \\ y^2 - z - b \\ z^2 - x - c \end{array} \right) \) has \(JF = \left[\begin{array}{ccc} 2x & -1 & 0 & -1 & 0 \\ 0 & 2y & -1 & 0 & -1 \\ -1 & 0 & 2z & 0 & 0 \end{array} \right] \).

\(JF(c) = \left[\begin{array}{ccc} 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{array} \right] \), so **YES**, by Imp. Fn. Thm.

YES: pivot columns!

(One could also express \(x \) in terms of \(z \), for example.)