Math 3592H Honors Math I
Quiz 3, Thursday Nov. 3, 2016

Instructions:
15 minutes, closed book and notes, no electronic devices.
There are three problems, worth a total of 20 points.

1. (8 points) Parametrize/describe all solutions to the system
 \[\begin{align*}
 x + y + z + w &= 0 \\
 x + 2y + 3z + 4w &= 1.
 \end{align*} \]

2. (4 points) Prove or disprove:
 Assume two functions \(f, g : \mathbb{R}^n \to \mathbb{R}^n \) are both differentiable on \(\mathbb{R}^n \),
 and satisfy \(f(g(x)) = x \) and \(g(f(x)) = x \) for all \(x \in \mathbb{R}^n \).
 Then for every \(a \) in \(\mathbb{R}^n \), the Jacobian matrix \(Jf(a) \) is invertible.
3. (8 points total)
Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 0 & 3 & c \end{bmatrix}.$$

(a) (4 points) Find all values of c that make A invertible

(b) (2 points) For each of the values of c found in part (a), how many solutions are there to the matrix system $Ax = 0$?

(c) (2 points) For each of the values of c found in part (a), how many solutions are there to the matrix system $Ax = e_1$?