1. (30 points; 10 points each part)

Let \(A \) be a \(3 \times 5 \) matrix.

(i) Prove or disprove: there are no vectors \(\mathbf{b} \) in \(\mathbb{R}^3 \) for which \(A\mathbf{x} = \mathbf{b} \) has exactly one solution \(\mathbf{x} \) in \(\mathbb{R}^5 \).

(ii) Now assume \(A \) can be row-reduced to \(\tilde{A} = \begin{bmatrix} 0 & 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \).

Write down a basis for the subspace \(V = \{ \mathbf{x} \in \mathbb{R}^5 : A\mathbf{x} = \mathbf{0} \} \).
(iii) Write down a matrix E having the following property:

If $A = \begin{bmatrix} r_1^T \\ r_2^T \\ r_3^T \end{bmatrix}$ with r_i in \mathbb{R}^5, then $EA = \begin{bmatrix} r_1^T \\ r_2^T \\ r_3^T - 6r_1^T \end{bmatrix}$

2. (20 points total) Prove or disprove: If $\overline{f}, \overline{g} : \mathbb{R}^4 \to \mathbb{R}^4$ are both differentiable everywhere, and $(\overline{f} \circ \overline{g}) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_4 \\ x_3 \\ x_2 \\ x_1 \end{pmatrix}$ for all \mathbf{x} in \mathbb{R}^4,

then the Jacobian matrix $[J\overline{f}(\mathbf{a})]$ is invertible for every$^1 \mathbf{a}$ in $\text{img}(\overline{g})$.

1The exam had “for every \mathbf{a} in \mathbb{R}^4”, which is not the assumption I intended!
3. (20 points total; 10 points each part) \(A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 4 & \alpha \end{bmatrix} \).

(i) Assuming that \(A\mathbf{x} = \mathbf{0} \) has infinitely many solutions, what is \(\alpha \)?

(ii) Assuming that \(\alpha \) is chosen as in the answer to part (i), write down at least one explicit \(\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \) in \(\mathbb{R}^3 \) so that \(A\mathbf{x} = \mathbf{b} \) has no solutions.
4. (30 points total; 10 points each part) Prove or disprove:

(a) If \vec{v}_1, \vec{v}_2 are nonzero, nonparallel vectors in \mathbb{R}^3, then $\{\vec{v}_1, \vec{v}_2, \vec{v}_1 \times \vec{v}_2\}$ are linearly independent.

(b) For any angle θ, the vectors

\[\vec{v}_1 = \begin{bmatrix} -\cos(6\theta) \\ -\sin(6\theta) \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} \sin(6\theta) \\ -\cos(6\theta) \end{bmatrix} \]

are orthonormal in \mathbb{R}^2.

(b) For any angle θ, the vectors

\[\vec{v}_1 = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} \cos(2\theta) \\ \sin(2\theta) \end{bmatrix} \]

are orthonormal in \mathbb{R}^2.