Math 3592H Honors Math I
Midterm exam 1, Thursday October 6, 2016

Instructions:
50 minutes, closed book and notes, no electronic devices.
There are four problems, worth a total of 100 points.

1. (48 points total; 8 points each part)
For these vectors in \(\mathbb{R}^3 \),
\[
\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \vec{w} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix},
\]
compute the following via dot and cross products. Your answers are allowed to contain unevaluated inverse trigonometric functions.

(i) The length of \(\vec{u} \).

(ii) The angle between \(\vec{u}, \vec{v} \).

(iii) The length of the projection of \(\vec{v} \) orthogonally (perpendicularly) onto the line spanned by \(\vec{u} \).
(iv) The area of the parallelogram in \mathbb{R}^3 spanned by \mathbf{u} and \mathbf{v}, that is, having vertices \{0, \mathbf{u}, \mathbf{v}, $\mathbf{u} + \mathbf{v}$\}.

(v) Some vector in \mathbb{R}^3 orthogonal (perpendicular) to both \mathbf{u} and \mathbf{v}.

(vi) The volume of the parallelepiped (slanted box) in \mathbb{R}^3 spanned by \mathbf{u}, \mathbf{v}, \mathbf{w}, that is, having vertices \{0, \mathbf{u}, \mathbf{v}, \mathbf{w}, $\mathbf{u} + \mathbf{v}$, $\mathbf{u} + \mathbf{w}$, $\mathbf{v} + \mathbf{w}$, $\mathbf{u} + \mathbf{v} + \mathbf{w}$\}.
2. (21 points total; 7 points each part)
Assuming that \(f(x) = \sin(x) \) is continuous, and \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \), compute with proof and/or explanations the values of the following limits of functions \(g : \mathbb{R}^3 \to \mathbb{R} \) as \(\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) approaches \(\vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \).

(i) \[\lim_{x \to 0} 3x^2 + 5y + z \]

(ii) \[\lim_{x \to 0} \sin(3x^2 + 5y + z) \]

(iii) \[\lim_{x \to 0} \frac{\sin(3x^2 + 5y + z)}{3x^2 + 5y + z} \]
3. (15 points total) Consider the matrix \(A = \begin{bmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix} \).

(i) (5 points) Compute \(A^2 \) and \(A^3 \).

(ii) (10 points) Compute \(e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots \).

4. (16 points total; 8 points each part) Prove or disprove:

(a) An arbitrary union of (possibly infinitely many) closed sets is closed.

(b) If \(\lim_{k \to \infty} a_k = L \) in \(\mathbb{R} \), and \(a_k \leq M \) for all \(k \), then \(L \leq M \).