1 Math 8401: Assignment 1

1.1 Part I. Scaling and non-dimensionalization

1. In a classical work modeling the outbreak of the spruce bud worm in Canada’s balsam fir forests, researchers proposed that the bud worm population \(n = n(t) \) was governed by the law

\[
\frac{dn}{dt} = rn(1 - \frac{n}{K}) - P(n),
\]

where \(r \) and \(K \) are the growth rate and carrying capacity, respectively, and \(P(n) \) is a bird predation term given by

\[
P(n) = \frac{bn^2}{a^2 + n^2},
\]

where \(a \) and \(b \) are positive constants.

- Determine the dimensions of the constants \(a \) and \(b \).
- Graph the predation rate \(P(n) \) for \(a = 1, 5, 10 \) and make a qualitative statement about the effect that the parameter \(a \) has on the model.
- Select dimensionless variables \(N = \frac{n}{a} \) and \(\tau = \frac{b}{a}t \) and reduce the differential equation to dimensionless form.
- Find the equilibrium solutions of the dimensionless equation. (There are multiple solutions for selected parameter values.)

2. The length \(L \) of an organism depends upon time \(t \), its density \(\rho \), its resource assimilation rate \(a \) (mass per unit area and per unit time), and its resource use rate \(b \) (mass per volume per time). Show that there is a physical law involving two dimensionless quantities only.

1.2 Part II. The heat equation

3. State and prove the maximum principle for the heat equation

\[
\frac{\partial u}{\partial t}(x, y, t) = \Delta u(x, y, t) + f(x, y, t), \quad (x, y) \in \Omega, \ t > 0,
\]

where \(\Omega \subset \mathbb{R}^2 \) is open and bounded, with smooth boundary \(\partial \Omega \).

Provide a physical interpretation of the maximum principle.

4. Show that if

\[
\frac{\partial u}{\partial t} - \kappa \frac{\partial^2 u}{\partial x^2} = 0 \quad \text{for} \quad 0 < x < l,
\]

\[
\frac{\partial u}{\partial x}(0, t) = 0,
\]

\[
\frac{\partial u}{\partial x}(l, t) = 0,
\]

\[
\frac{\partial u}{\partial x}(x, 0) = 0 \quad \text{for} \quad 0 < x < l.
\]

the maximum of u for $0 < x < l$ and $0 < t < \bar{t}$ must occur at $t = 0$ or at $x = l$.

5. Consider the partial differential equation

\[\frac{\partial u}{\partial t} = \kappa \Delta u + au \quad \text{for} \quad x \in \Omega \subset \mathbb{R}^3, \]
\[u(x, 0) = u_0(x) \quad \text{in} \quad \Omega, \]
\[u = 0 \quad \text{on} \quad \partial \Omega \]

where Ω is open and bounded.

- Write down the energy law of the problem.
- Find the long-time behavior of the solutions, that is, the limit $u(x, t)$ as $t \to \infty$.

6. Suggested reading assignment from the book by Sam Howison: Chapter 1, Sections 2.1 and 2.2, Sections 3.1-3.3.

The assignment is due on Friday, Sept 23.